TOWARD A SCIENCE OF FORM

acle — her constancy. Each vear, fresh,

, new soil, water, and light weave to form
the fam1har shapes of leaf and flower. The mhemory
of last year’s forms silently lives through a wintery
night to unfold under warmer skies into the foliage
of spring. Nature remembers the maple’s leaf just as
we do. The.miracle deepens as we turn from the
kingdom of plants to that of animals. For while leaf
and stem die each fall into the earth, the life of beast
and bhird is not so completely bound to the seasons.
They — and we —persist from season to season, year
to vear, even though every cell of our hodies is
changing: perishing, o be recreated. Every seven
years we are filled out anew. The familiar counte-
nance is familiar not for its substance but for its line-
aments, its shape or gesture. In it we recognize a
form that passes through all change. As Heraclitus
put it two thousand years ago, *Ttisin changmg that
things find repose.” The world, in constant flux,

rests.

midst nature’s everchanging raiment,
we descry what may be her greatest mir- -

Such considerations as these have stirred philo-
sophic and scientific reflections since at least the
time of ancient Greece. Plato raised form to the
realm of incorruptible, eternal esdos. His pupil Aris-
totle paired form with matter and named them the
twin principles that underlie all being and becoming.
Throughout the history of science, the mystery of
form’s origins has been the central question. Why
are things formed as they are: why does the pyrite
crystal show itself as cube and dodecahedron only,
why do leaves spiral around the stem, why is the
heart shaped and structured as it is? Again and again
one encounters among biologists the judgment ex-
pressed by Joseph Needham that “the central prob-
lem of biology is the form problem.”

It is this aspect of nature, the aspect of form, that
we shall explore here, in a brief introduction to a
man whose discoveries open new avenues of inquiry,
not only into the forms of nature, but into the very
nature of form itself. His particular study, and ours
for the purposes of this article, is that of math-
ematics, which is concerned with pure form, form
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winnowed completely from the corporeality that al-
ways accompanies it in the sense world.

Since ancient times, arithmetic and geometry
have divided the universe of mathematics between

them. The queen, however, was geometry, who
reigned unchallenged from the time of Euclid until
the eighteenth century. Only during the Enlighten-
ment, at the hands of men such as Lagrange and La-
place, was geometry dethroned and purely alge-
braic, abstract analysis put in her place. Lagrange

informs us with evident satisfaction in his Mécanigue

analytigue that “no diagrams will be found in this
work. The methods which I expound i i demand
neither constructions nor geometrical or mechanicat

reasonings...."

By contrast, we shall be drawn into that realm of
mathematice that speaks directly and visually of
form, namely geometry, for our ultimate goal will be -
to deseribe a visible and highly ordered domain of
natural phenomena.

To date, the geometry of the living world has es-
sentially defied our attempts to imitate it. Perhaps
our approach has been too limited in scope or too
inflexible. The con¢epts we bring to bear are often
bound by our very conception of space and the
movements we think possible within that space. To
comprehend the geometry of forms in the living:
world, new concepts may be needed, ones intimately
wedded to organic phenomena. The task of finding
such concepts is not a simple one, but there are
paths that beckon and individuals who have begun
to explore them. The path we are going to pursue
here is that of projective geometry. It embraces a
vision of space far more dynamic, far more general,
than the one implicit in Euclidean geometry. By
giving up the rigid, restricted movements of Eu-
clidean geometry, we gradually rise to a wonderful,
fluid form of geometry, one with which we may hope
to capture at least a small portion of those forms the
living world displays before us. This is, after all, a
world characterized by becoming, by development,
by growth and decay. It seems somehow appropriate
to approach the living world with a geometry of
becoming.

The study of geometry and pattern in the inor-
ganic world is an old and honorable pursuit.
From the hexagonal forms of the snowflake to the
intricate dance of the planets, both the static and dy-
namic patterns of the physical universe have been
systematically described. '

The forms of plants and animals have been more
resistant to precise mathematical description. True,
individuals such as the Scottish biologist D'Arcy
Thompson have in their treatment of organic forms
drawn upon geometry o establish connections he-
tween a great variety of plants and animals. The ap-
paratus of geometry, however, is introduced only
toward the end of D’Arcy Thompson’s classic On
Growth gnd Form, and only in an elementary way. In
the famous last chapter, “On the Theory of Transfor-
mation or the Comparison of Related Forms,” he lays
systems of coordinate nets over various animals or
skeletal members. By imagining these nets as sub-
ject to particular systematic distortions, the form of
one species can be geometrically transformed into
that of another with remarkable fidelity. The adjoin-
ing drawing shows what I mean (figure I}, As an ex-
ample, he takes the fish Polyprion and places over it
a rectangular coordinate system and then trans-
forms it to an alternate coordinate system to vield
the species Pseudopriacanthus altus. The original
form, that of the Polyprion, 1s given rather than con- -
structed, and thereafter is transformed point by
point via his “method of transformed coordinates.”



D’Arcy Thompson’s work is only a hint at a more
general and powerful use of geometry in the study of
formin nature. As I hope to show, if we consciously
develop geometry with the-principles of transforma-
tion foremost, we gradually move from the most ele-
mentary to more and more complex transforma-
tions. In so doing we are following the program put
forward in 1872 by the brilliant mathematician and
pedagogue Felix Klein, His work, and especially
that of his Norwegian collaborator, Sophus Lie, pro-
vide the basis for a_geometry that can be used to
study certain of nature’s forms. This study has been
pursued by several geometers, of whom Lawrence
Edwards is the most recent and most successful,
Much of this article concerns the discoveries he has
made and continues to make. But before we enter
into Edwards’s study of organic forms, I would like
to try to give the reader some sense for the mobility
and beauty of the mathematical thought with which
he works. ' :

hen asked by King Archelacs for an easier

way into geometry, Euclid is said to have re-
plied, “There is no royal road to geometry” The
nineteenth-centiry German mathematician Hankel
was certainly thinking of Euclid when he called pro-
jective geometry the roval road to all mathematics.
Once one travels a way along that road, Morris
Kline's more recent sentiment quickly becomes
one's own: “In the house of mathematics there are
many mansions, and the most elegant is projective
geometry” Yet for all that it is a mostly forgotten
mansion today, and so we must spend a moment or
two retracing its elements.

It is to the Renaissance artists of the fifteenth and
sixteenth centuries that we must turn for projective
geometry’s beginnings. The discovery of perspec-
tive brought about the extraordinary transition in
painting from two to three dimensions. We need
only compare the spatial arrangement and composi-
tion of medieval paintings by such artists as Giotto,
Duccio, and Simone Martini to those of works by
Diirer and Leonardo to realize that before 1500
space, size, and composition obeved spiritual or
symbolic laws, not the physical laws of perspective.

With the discovery of perspective is born the basis
for projective geometry. EXirer's 1525 woodcut,
“The Designer of the Lute,” shows clearly the fun-
damental operation of projection and section so cen-
tral to projective geometry (figure 2). To assist us in
understanding this construction, let us imagine that
“visual rays” are emitted from the eye. The ohject
before us, in this case the lute, is touched by each
visual ray and the object is thereby perceived. Now
between the eve and the lute place a screen. The

" rays from the eye to the lute are intercepted by the

screen, forming a “perspective” view of the lute on
the screen, as DHirer shows us. Here we have the key
construction of projective geometry: projection
from a center (the eye) and section by a plane (the
screen). In the process we have “transformed” the
object, that is, created an image by identifying one
point on the screen with each point on the lute. This
is the mathematical definition of a “point transfor-
mation.” By tipping the screen or moving the center
of prajection, an enormous range of transformations
becomes possible, We can also take the screen as a
new ohject and transform it in the same way by a se-

Figure 2. Woodeut by
Albrecht Diirer tilus-
trates the principle of
Drojection and section. In
the wooedcuft the artist
marks the poinis af
which the rays from the
eve to the lute infersect
the screen. :
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cond transformation, placing a second screen he-
tween the first one and the center of projection. The
business of projective geometry is to investigate the
laws of the patterns that arise in space through a se-
ries of such transformations.

When confronted by the whirl of movement that
projective transformations entail, it may seem diffi-
cult to imagine any stable ground or lawfulness.
However, by making the transition slowly from the
simple transformations associated with ordinary Eu-
clidean geometry to the far more general ones of
" projective geometry, we can be led to experience an

element of order that persists throughout.

As the following discussion will show, a triangle
projected onto a surface can assume many different

_triangular forms, depending on the angle of its pro-
jection. Yet certain properties will remain un-
changed. The straight lines that compass the tri-
angle, for instance, will always reappear as straight
lines. Thus i1s “straightness” one of the invariants, or
unchanging elements, of projective geometry. What
other elements exist such that “in changing they find
repose”? By pursuing this question we come not only
to the stable ground of geometry, the laws of space
that govern projective transformations, but also to a
special set of forms, some of which will be startlingly
familiar. '

Te learn how these special forms arise, we must
first bring geometry into motion, for only against the
backdrop of incessant change does the concept of re-
pose, or “invariance,” gain meaning, Imagine yvou

have befare you a triangular piece of paper. It can
easily be slid about the tabletop to assumme any nuim-
ber of positions. The accompanying figure shows

_three such positions (figure 3). To move from one to

the other I can push the triangle up and to the right;
and then rotate it. If I take my ruler, 1 find the corres-
ponding sides of the triangles are still of the same
lengths. My protractor likewise shows that the cor-
responding angles are of unchanged magnitudes.
The triangles are, as Euclid would say, congruent.
Neither length nor angle has changed in the process
I have just described. Formally, one would say that

lengths and angles are “invariant” under translations

and rotations. Here we discover one kind of motion,
by noticing that lengths and angles remain un- .
changed. .

Yet clearly there are other kinds of motions or
changes possible. The cubic form of a pyrite crystal
is forever the same, yet it may grow in size. That is,
the lengths of its sides will change, without an asso-
ciated change in the angles. Here we encounter a
new kind of transformation, one that involves a
change in size hut not in shape. Thus to translation
and rotation we add dilation as a possible transfor-
mation.

We may proceed stepwise to ever freer types of
transformations, ones that will take us heyond Eu-
clidean geometry. With each step, what was before
an invariant enters the realm of change. In the case
of our original triangle, not only lengths, but angles
too were invariant. We then allowed the lengths of

Figure 3. A friangle can be moved f}'am one position fo anothey by translation (eft arrow) and by rotation
right arvow). Such simple transformations fall within the bounds of elementary Euclidean geometry,
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Figure 4. A triangle, illumined by a small bulb (the cenier of projection), casts a shadow onto a plane. The

shadow represents a “projection” of the trigngle; point A' in the shadow corvesponds to A in the oviginal tri-
angle. As the center of projection.is gradually lowered, the apex of the shadow (A') vecedes and passes fo
infinity, and even veturns from infinity in the oppasite divection (not shown),

the sides to vary, yet only in such a way that all the
angles remained the same. In other words, the sides
all grew simultaneously. Now we will change angles
as well as size, thus entering the realm of “affine
geometry.” We can do this by replacing our original
triangle with” one of rubber. Such deformations
occur constantly in nature. Consider a stream of
water. I you could enclose a portion of a brook in an
imaginary flexible ¢ube, then the cube, through
which the brook flows, would tip and stretch, be-
cause the water nearer the brook bed moves more
slowly. D’Arcy Thompson often uses such transfor-
mations as these in his On Growih and Form.

And so we may continue our pursuit of ever more
flexible transformations. Though not obvious, cer-
taininvariants remain, even in this last class of trans-
formations. It is rather remarkable, for instance,
that under these transformations a set of parallel
lines is transformed into another set of parallel lines
— all the more astonishing when we remembeér that
the angles between intersecting lines may change in
general. One may state the invariance in another
way. In plane geometry, two lines intersect at one
point, unless the lines are parallel. We may over-

- come the exceptional character of parallel lines by

defining a new “ideal” point, namely the point at in-
finity. Since under affine transformations, a set of

parallel lines remains parallel, then the point at infin-
ity remains a point at infinity. In projective geom-
etry, even this invariant disappears. Infinitely dis-
tant elements can be brought into the finite by a pro-
jective transformation. We can easily see how this
occurs in the next set of figures.

Imagine our ever-ready triangle as standing up-

. right on a plane surface Figwre 4). A small light bulb

illumines the triangle, casting a shadow onto the

plane. The shadow we call a “projection” of the tri-

angle onto the plane. The apex A of the triangle is
projected to AL But notice what happens if the light
is lowered. The apex of the shadow triangle recedes
farther and farther, until it vanishes into the infinite
horizon. The finite has become infinite. In projective
geometry, we replace the light bulb with its mathe-
matical analog, a center of projection. By lowering
the center of projection, the apex can be made not

only to recede to infinity, but even to return again

from the other side! It is as if passing to infinity in
one direction hfought one back from the opposite.
Such is the nature of a projective transformation.
With it we attain a very high order of freedom, yet
even here there are properties and forms that re-
main unchanged. “Straightness” is one of them. An-
other is the property of “incidence.” That is, if two
lines intersect in a point before transformation, they
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willintersect in a corresponding péint after transfor-
mation. There are still other invariants, but for our
purposes we-can limit our treatment and turn now to
Sephus Lie, in whose work the idea of invariance
meets with that of form in space, the heart of our
considerations.

" Nearly one hundred years ago Lie presented a sys-
tematic discussion of a special set of curves in two
dimensions, which he termed Bak#cirven or “path
curves.” These ctirves, and the analogous surfaces in
three dimensions, possess the remarkable property
of remaining unchanged when acted upon by re-
peated application of a projective transformation.

Path curves can be seen as arising in the following
way. Recall our discussion of Ditrer’s drawing of the
lute. I commented there that we could take the
screen as a new ohject and project it onto another
plane or screen by means of a second projective
transformation. Clearly there is no end to the num-
ber of times such an operation could be repeated, the
new screen now becoming the object.

Now imagine three lines forming a triangle drawn
onto a thin glass plate; several points around the
perimeter of the triangle are carefully marked with
blue dots (figure 5). Some distance above the glass
plate is a small lamp, our center of projection. We
imagine the shadow to fall on a second, cleverly fah-
ricated glass plate, which turns black exactly where
the shadow falls and produces blue dots at the prop-
er corresponding points. We have just performed the
fundamental transformation of projective geometry,
projection and section. (Whereas in the Direr draw-
ing, the plane is between the object and the center of
projection, in this instance the object is between the
plane and the center of projection.) Placing the two
plates together and looking through them, we see
two triangles, one slightly different from the other—
the degree of difference depending on the particu-
lars of the projection and section, H the second plate
was very close to the first, then the difference can be
small indeed. Thus one has two triangles in one
plane. Mathematicians formalize the process by say-
ing that the first plane and the second are united
after the transformation.

The process can be repeated with the object plate,
image plate, and projecting lamp all situated exactly
as hefore. The image plate is now projected. After
the planes are united, three triangles appear, each
with its set of blue dots. By repeating the process
over and over, many triangles appear, all with blue
dots. The mathematician would say that we have
transformed the plane onto itself many times via &
series of identical projective transformations. Now
forget the triangles and attend only fo the blue dots.
They will form a set of curves. Following the trajec-
fory of one of the dots, a point in a plane, we have
been led to a path curve. Although we have chosen
to watch only a few blue dots, clearly all the points of
the plane are brought into movement by the series of
projective transfermations. Transforming the plane

@LAWRENCE EDWARDS
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 ontoitself has produced path curves. They are forms

of the plane, structures that remain unchanged
throughout the movement. By changing the angle of
projection, we could arrive at a different series of
projective transformations and a different set of
path curves.

If we considered the entire plane, we would find
that three and only three points never move at all.
They are completely invariant.* All other points

move along path curves that cross only at the three’

invariant points of the plane. We can watch the
peints of a path curve march dutifully along behind
one ancther, never deviating from their designated
path, as if moving through the veins of some orga-
nism. The whole plane is in movement. Yet within
the flux, there abides form: the pattern of path
curves does nof evolve, although every aspect and
point of the plane (save three) are in motion! One
cannot help noticing the kinship between such form
within movement in geometry and the similar bio-

logical phenomenon. Every human cell is replaced.

within a seven-year span, yet our countenance re-
mains, in all essentials, unchanged. The beauty ap-
parent in the contemplation of these concepts and
forms quickly wins the heart of anyone with the least
affection for the elegance of pure mathematics.
While far more difficult to imagine, an entirely
analogous procedure can be followed in three dimen-
sions. In this case, surfaces as well as curves fill out

space with forms. These are the invariant forms of

*The basis of this statement can be shown mathematically but is
too eomplex to present within the confines of this article.

Z

space; invariant, that is, under repeated applications
of an identical projective transformation. It is just
these dynamic yet invariant path curve forms that
we shall discover around us in the plant and animal
kingdoms.

Path curves present arich variety of spatial forms.
These include egg shapes, cones, and vortices (fig-
ure 6). Using a particular mathematical procedure,
one can assign a number, called lambda, the Greek
letter A, to each shape that appears. For instance,
positive values between zero and infinity are as-
sociated with various egg-shaped path curves. Nega-
tive values give all the vortex forms. The forms so
created on the geometer's drawing table bear a strik-
ing resemblance to certain forms in nature. Law-
rence Edwards starts with the question, is this re-
semblance merely superficial, or does a genuine cor-
respondence exist?

During twenty years of résearch, Edwards has ex-
plored the kinship between path curves and naturat
forms as diverse as pine cones, plant buds, eggs, the
human heart, and developing embryos. The results
of his research and his reflection on their meaning
are summed up in his recent book, The Field of
Form. In it he tells of the blind alleys into which he
wandered butf also of the moments of excitement
when he saw clearly how transformations of projec-
tive geometry touch the earth and gather up sub-
stance to clothe their forms. We will inquire into only
two of his findings, those concerning plant buds and
the human heart. With them the heauty of his work
will become apparent. '

7

A=03 A=Q

Figure 6. Paih curve forms in three dimensions resemble egglike and voviexlike Figures, depending upon the
manner of theiy construction. The several examples shown here represent path curve forms differing only in
the important mathematical pammeter tambda (v). If lambda = 1.2, the form is rounded and egglike. As
lambda increases, the form becomes sharper and blunter at its ends. Negative values of lembda produce wmax

Jorms.
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Let us begin with the bud of the wood sorrel (Ox-
alis acetoselin), which gives forth its small white
flower during midsummer. By carefully collecting
several samples, _mbunting them for photography,
and enlarging the prints, we can make very exact
measuréements of the bud shape in profile. In con-
structing the corresponding path curve, we find that -
by placing two of the invariant points at the upper
and lower poles of the hud and following an exact
mathematical procedure, we can determine the path

z\ | ’ 2\

Figure 7. The solid lines represent fracings of the
actual living form of the ventricle as defected by an
X-ray procedure. The broken lines illustrate the path-
curve forms calculated fo fit the actual forms. During
one full heart cvele (of about 0.8 seconds’ duration),
the path-curve forms change dramatically and reveal
a vhvthmic seven-fold process.

The left ventvicle of the human heart at the moment
of full diastole or relaxation (lef).

The sawme ventyicle (.14 seconds before systole or
contraction (middle).

The ventricle 0.04 seconds before full svstole
(right).

curve that best fits the wood sorrel bud. This can be
done for many, many wood sorrel buds at the same
stage of development, regardless of size. The agree-
ment betweern the pure mathematical form and the
living one is striking. Perhaps the most immediately -
convincing evidence is found in the simple visual
comparison of an ideal path curve with the actual
form of the bud. Often the difference is little more
than the width of a pencil line—well within the pre-
cision with which one can make reliable measure-
ments on these frail little buds, Not all species follow
path curve forms so perfectly, but in over eighty
percent of the cases studied, the plant buds are
found to reflect path curve geometry with remark-
able fidelity. _ :
Correspondences can be found elsewhere in the
living world. The spiral tendency of leaves cn a stem -

has long engaged botanical and mathematical re- -
searchers. Similar spiral configurations are to he "~
seen in pine cones and in bud formations, in the way "

petals arrange themselves around the bud center. It
turns out that the path curve surfaces of the bud are . .

themselves covered with a spiral pattern, each spiral =

being a path curve. Very often one can capture the .-
gesture of these spiral patterns by suitable path-
curve analysis. Such agreement seems unlikely to
occur by chance, for it can be found in many other

- biological forms, including that of the organ of the
* heart.

‘The heart in animal or man can be thoﬁght'_of as
the perfect or archetypal muscle. Other muscles
may be seen as variations of this central organ,



" whose whole existence is ceaseless rhythmic activi-

tv. Beginning with the detailed studies of the heart
made by Scottish anatomist J. Bell Pettigrew in his
hook Design in Nature, Lawrence Edwards worked
to uncover the path-curve form of the heart. In this
instance, not only was the outer form of the heart
significant, but so were the particular circling pat-
terns made by the several layers of muscle that to-
gether comprise the heart. Pettigrew distinguished
seven layers. Moving from the outermost inward,
the muscle patterns change from a left-handed to a
right-handed spiral at the fourth layer: In addition,
the left ventricle, which Pettigrew terins the “heart

plant bud and heart. Lawrence Edwards has made
preliminary studies in several other directions, but |
we must leave these aside for want of space. Of
much greater importance is his discovery of what he
terms the “pivot transformation,” which relates
forms in space to those of a complementary realm,
one that is sometimes called counterspace. I shall
conclude by spending a few moments considering
the general character and significance of these ideas
for the understanding of plant forms.

The forms. .. created on the geometers drawing
table bear a striking resemblance lo certain
forms in nature. Lawyence Edwards starts with
the question, is this resemblance merely super-

of the heart,” changes its form as one moves from
laver to layer. Would it prove possible to follow these
changing forms as one moved inward? Indeed, by
changing the positions of the invariant points, the
slightly asymmetric form of the heart can be geo-

.. metrically reproduced. The form of the left ventricle
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also proved possible of capture in a path curve. Even
the spiral gesture of the muscle lavers, like the spiral
of the wood sorrel bud, finds its expression in path
curves, as a second sef of curves that cover the
surface.

One of Edwards’s most dramatic accomplish-
ments must surely be his study of the living human
heart, made possible through a kind of X-ray moving
picture. Every fiftieth of a second an X-ray image is
talken of the beating heart. The technique provides a
picture of the inside surface of the heart, the inner-
most of Pettigrew’s seven layers (figure 7). Edwards
follows the changing form of the heart throughout
the duration of a pulse and finds that the movement
from full expansion te full contraction is in itself a
rhythmic sevenfold process, one beautifully revealed
through his path-curve analysis.

So far we have seen a remarkable congruence he-
tween those forms inwardly created by the human
mind, that is, path curves, and the tangible forms of

-

ficial, or does a genuine correspondence exist?

When visualizing a circle, we tend to see it as a
continuous curve formed of points all equally distant
from the circle’s center. The circle is formed from
the center out, point by point (figure 8). It is initially
surprising to learn that there is a second means of -
forming a circle. We must free ourselves from the
habit of thinking of points as somehow more pri-
mary than the line. For in this other view, it is just
the line, and not the point, that is used to generate a
circle. The construction can easily be understood by
visualizing one line after the next as touching a ¢ir-
cle. The set of lines has thereby created a tangent
envelope that also completely defines the circle
(figure 9). If we generalize still further to three di-
mensions, the infinitely extensive, unitary, and undi-
vided plane becomes the generative entity of space.
Thus is the sphere formed no longer of points equi-

ngg 8. Pointwise civcle,

Figure 9. Linewise circle,




Wiid vose bud with
immature seed capsile.

distant from a given point. Rather, planes shape the
sphere, just as the sculptor shapes his clay with the
flat of his hand. So may the infinitely many planes of
space fashion geometric forms from the periphery
inward. It becomes possible to imagine a new kind of
space, a “counterspace.” wherein point becomes

_plane.

Working from indications for projective geometry
given by the Austrian philosopher and scientist
Rudolf Steiner, George Adams and Louis Locher-
Ernst sought to develop a geometry of counterspace
and to connect it with the botanical kingdom.
{Adams's work is to be found in his books The Plent
between Sun and Earth and Physical and Ethereal
Spaces, both coauthored with Olive Whicher.) Law-
rence Edwards, who had worked with Adams, has
confinued these efforts. In particular, he has ex-
plored a novel class of projective transformations
that involve a change in space element. That is, in-
stead of transforming ene point to another, or a line
to a line, Edwards uses those projective transforma-
tions that transform a point to a line, or a point to a
plane.

Such transformations immediately call to mind

what the quantum physicist David Bohm terms “the
tmplicate order,” wherein the entirety of a line can be

“enfolded” into a point. In such instances the rela-
tionship between the whole and the part is clearly

‘@H. WENDLER/THE IMAGE BANK

unusual, for the whole js in the part, the line isin the

point! _ : .

We cannot delve here into the complexities of
counterspatial geometry. Suffice it to say that once
we have explored its properties mathematically, we
are free to move between space and counterspace,
between point and line, by means of Edwards’s pivot
transformation. Can this possibility be exploited in
the study of organic forms? Lawrence Edwards saw
the means for doing 0. Working with the hip of the
wild rose, he was able to discover the beautiful
“plane-wise” vortex that stands in counterspace

behind it. Moreover, the character of the pivot \

transformation is such that the bud of the wild rose
(itself a path curve) mediates the transformatiornt
from vortex to hip (figure 10). Thus are all three
elements—bud, hip, and vortex—brought into an

harmonious interrelationship. ‘Other plant species
showed similar fidelity to the geometric f_orms___gen— _

erated from his counterspatial vortex. _
The discovery of the counterspatial vortex, as he
describes it in his book, is a grand moment td

rehearse with Mr. Edwards. Through it he seemsto -

approach the nature of life itself. And now the full
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. strength of projective geometry becomes clear. In

addition to providing transformations that are highly
mobile, it establishes, through the development of

. counterspace, a new relationship between the whole
- and the part. '

n his work, Edwards not only is cencerned with

describing mathematically the natural forms he
studies, but also tries to find the origins of these
forms. He has not, as do most contemporary re-
searchers, sought to find them through melecular
biclogy, but instead by developing a science of form.
When reading about what he terms “fields of form,”
one s reminded of the great English physicist
Michael Faraday, developer of the field concept.
The fields in Edwards's work, however, are con-

ceived not as physical forces but as insensible, ideal

forms that are nevertheless imaged in the tangible
shapes of the living world. He is convinced, as was
Goethe, that nature creates her infinite forms ac-
cording to a plan, according to an Idea. Goethe
wrote: “The Idea is eternal and unitary. ... All that
of which we become aware and of which we can
speak are only manifestations of the Idea.” The Idea
is not to be identified with a purely material or
molecular basis —the building blocks of life. Rather,
we should attend to the forms themselves. [n writing
of biclogy, Aristotle made use of an analogy, that of a
house:

The object of architecture is not bricks, moviar, or
timber, but the house; and so the principal object of
natural philosophy ts not the material elements, but
their composition, and the iotality of form, indeper-
dently of which they have no existence.

awrence Edwards has attended to the composi-
Ltion and form of organic nature as few betore him
and has shown that through careful observation of
nature and the free activity of human thinking, the

Ideas that seem to touch nature may also unfold in

the human mind.

When Kepler brought forth the great laws of plan-
etary motion, he said he had stolen the golden ves-
sels of Egypt. Kepler heard through these geometric
laws the harmony of the spheres, and his decades of
labor were requited. Lawrence Edwards shares
Kepler's vision of the world as created and formed
according to an image, fashioned not simply by a
field of forces, but rather in accord with a “field of
form?” ' ®

Avthur Zajonc is associate professor of physics at
Asmherst College, where he feaches physics and the his-
tory of science. His vesearch intergsts include laser spec-
troscopy and atomic physics.

Suggested veading:

On Growth and Form, W. D’Arcy Thompson, -

abridged edition, John T. Bonner, editor, Cam-
hridge: Cambridge University Press, 1961.

The Field of Form, Lawrence Edwards, Edinburgh:
Floris Books, 1982.

The Geometry of Life, Lawrence Edwards, New
York: Proceedings, The Myrin Institute, in press.

The Plant between Sun and Earth, George Adams
and Olive Whicher, Boulder, Colorado: Shambhala,
1982.

“Projective Geometry,” Morris Kline, Scientific
American, Volume 192 (1), pages 80-86, 1555.

Elementary Mathematics from an Advanced Stand-
point; Geometry, Felix Kiein, New York: Dover
Publications, 1948.

Figure 10. Through use
of the pivot transforma-
ton, it can be shown
that a path-curve vortex
form mediates between
the form of the bud and
the form of the seed
capsule, tn this instance,
a rose hip. The seed-
bearing ovgan of the
plant is usually not a

path cuerve, but ils form

can be delinegted with
greaf accuracy by the
pivot transformation,

fd o)



